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Abstract:  

Insurance is a major pillar of the economy, providing protection against unforeseen events and 

allowing both individuals and businesses to shield against potentially devastating financial 

losses. This study focuses on the home insurance product for a Moroccan insurance company, 

which offers comprehensive coverage for the dwelling and belongings against various risks 

such as fire, water damage, and theft. This type of insurance guarantees significant amounts, 

making the insurer's risk exposure very dangerous, especially in the event of claims ratio 

deviation. Therefore, the primary objective of this research is to assess the exact value of the 

actuarial risk associated with the home insurance portfolio to preserve its financial 

sustainability. In this study, and in order to evaluate the overall risk for the product in question, 

we focus on modeling the number of annual claims and the resulting financial burden, using 

various statistical modeling laws to quantify the overall risk that the insurer could face and 

therefore anticipate its commitments to policyholders. Additionally, we analyze the results 

obtained through the application of Monte Carlo simulation, which is one of the most effective 

methods for solving complex numerical problems. Therefore, we propose a risk quantification 

model based on two different methods which represents a decision making tool for insurance 

companies. 

 

Keywords: Monte Carlo; Statistical Laws, Liability, Portfolio, Maximum Likelihood, 

Mutualization 
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1 INTRODUCTION 

The primary goal of this study is to assess the actuarial risk linked to the home insurance 

portfolio of a Moroccan insurance company to ensure its financial sustainability. 

In fact, the main objectives of this research are first to evaluate the actuarial risk associated with 

the portfolio and second, to provide insurers with a decision support tool for managing actuarial 

risk. 

As commonly known, Insurance is a major pillar of the economy. It offers protection against 

unforeseen events, allowing both individuals and businesses to guard against potentially 

devastating financial losses (8). Insurance products cover a wide range of risks, from car 

accidents to natural disasters, illness, and liability. 

Indeed, the insurer commits to financially cover the insured for a specific period in the event of 

a predetermined occurrence as per the contract (9), in exchange for receiving a sum known as 

the "insurance premium" (2). This premium is calculated based on the expected likelihood of 

the occurrence of the insured event. As actual occurrences of claims tend to fluctuate around a 

statistical average, the insurer aims to stay close to this average by subscribing to as many 

contracts as possible to compensate for the risks involved. This represents the principle of 

mutualization (3). 

The array of random events that an insurance company commits to manage (such as the death 

of an individual or the impact of a fire on a property) can lead to an underestimation of the 

likely indemnity burden. This could result in significant financial consequences and weigh 

heavily on the insurer's solvency (3). 

Therefore, the insurer must ensure that it holds sufficient reserves to meet its financial 

obligations to policyholders. Solvency is not only a regulatory requirement (1) to protect 

consumers but also a necessity to prevent the insurer from facing bankruptcy in the event of 

exceptional indemnity events. 

This study focuses on the home insurance product, where the insured benefits from 

comprehensive insurance covering the dwelling and belongings against a range of risks (fire, 

water damage, theft, etc.). This type of insurance guarantees significant amounts, increasing the 

insurer's exposure to risk (3), especially in the case of claims ratio deviation. 

Consequently, the main objective of this research is to evaluate the exact value of the actuarial 

risk associated with the home insurance portfolio for a Moroccan insurance company to 

preserve its financial sustainability. 
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Within the framework of this research, and in order to assess the overall risk for the concerned 

product, we will focus on modeling the number of annual claims and the resulting financial 

burden (2), utilizing various statistical modeling laws (8) to quantify the overall risk the insurer 

could face and anticipate its commitments to policyholders. 

Additionally, we will compare the results obtained through the application of Monte Carlo 

simulation, which is one of the most effective methods for solving complex numerical problems 

(1). 

This paper is organized according to the following outline: after the introduction, we present 

the research methodology and the theorical background of the research. Afterwards, we present 

the results of our study. We then discuss the findings before concluding and presenting the 

future works. 

 

2 RESEARCH METHODOLOGY 

2.1 RISK MANAGEMENT FOR AN INSURER 

Risk management in the insurance industry is a crucial aspect aimed at assessing, quantifying, 

and managing the financial and statistical risks associated with various uncertain future events, 

as precise risk assessment is essential for informed decision-making and stakeholder protection. 

Insurers face several potential risks, including risks related to underestimating claims 

frequency, as well as market fluctuations such as changes in interest rates, stock prices, and 

asset prices. These fluctuations can impact the value of insurer investments and profitability. 

Insurers must accurately assess these risks to anticipate them and develop strategies to address 

them. 

In this context, insurance companies use mathematical and statistical models to quantify risks. 

These models take into account a variety of factors, such as historical claims trends, external 

risk factors, and correlations between risks. Once risks are assessed, actuaries work to develop 

strategies to manage and mitigate these risks. This may include strategies such as portfolio 

diversification, purchasing reinsurance, and establishing financial reserves, which are funds 

insurers must set aside to ensure they have sufficient funds to meet their obligations to 

policyholders in the event of a claim. These reserves must be calculated prudently and in 

compliance with regulatory standards. 

In the context of this study, we will focus on modeling risk related to claims assessment. Indeed, 

insurers calculate the likely claims frequency for each portfolio based on the fundamental 

concept of risk pooling, which reduces the financial impact of individual risks by sharing them 
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among a large number of participants, thus ensuring fair and stable financial protection for all 

policyholders. 

Below is how risk pooling works in insurance: 

1. Basic principle: Each policyholder pays a premium to the insurer in exchange for the promise 

of compensation in the event of a claim. These premiums are pooled to form a common fund, 

from which payouts are made to policyholders who suffer losses. 

2. Risk diversification: By pooling the risks of many policyholders, the insurer creates natural 

diversification. Losses suffered by some policyholders are offset by the premiums paid by all 

members of the group. Thus, individual losses are cushioned by the collective. 

3. Equity and solidarity: Risk pooling is based on principles of fairness and solidarity. 

Policyholders contribute based on the level of risk they represent, but in the event of a claim, 

all benefit from equivalent financial protection, regardless of the extent of their contribution. 

4. Financial stability: Risk pooling helps ensure the insurer's financial stability by distributing 

losses more evenly. This allows the insurer to better predict its obligations and maintain 

solvency even in the event of significant claims. 

5. Size effect: The larger the insured group, the more effective risk pooling is. Insurers often 

seek to expand their policyholder base to benefit from this size effect and reduce the overall 

risk of their portfolio. 

 

2.2 THE AGGREGATE CLAIM AMOUNT MODEL 

We define the random variable S to be the total amount of claims arising from a risk in one 

year. 

Let the random variable N denote the number of claims from the risk in this year. 

And let the random variable Xi denote the amount of the ith claim. The aggregate claim amount 

is just the sum of individual claim amounts. Therefore we can write (2) : 

 

                                     

 

We make two important assumptions: 

First we assume that {Xi}i =1,….,∞ is a sequence of independent and identically distributed 

random variables. 
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Second, we assume that the random variable N is independent of {Xi }∞ i=1.   

In this case, we have (1): 

E(S) = E(X) * E(N) 

 

 

2.3 MODEL DISTRIBUTION 

The objective of this section is to build a probabilistic model to represent, the aggregate claim 

amount S (2). 

The model would require a component that modelled the number of claims and another that 

modelled the amounts of those claims (2). 

As for frequency, the two most well-known models are the Poisson distribution and the negative 

binomial distribution. We will seek the most suitable model for our case through validation 

tests.  

The Poisson distribution, used in the case study of the article, has the following probability: 

 

 

 

The expectation is µ = λ. 

 

The choice of the distribution for the claim amount is crucial in modeling the risk borne by the 

insurer. In actuarial science, to model the random behavior of severity, continuous distributions 

with support in R+are typically used. 

 

As for severity, the most commonly used continuous distributions are: lognormal, exponential, 

Pareto, gamma, and Weibull. We will demonstrate in the practical part that the lognormal 

distribution is the most suitable. 

 

In this case, if X follows a lognormal distribution LN(μ,σ2), then ln(X) follows a normal 

distribution N(μ,σ2), where μ = E(X). As for the probability density function, we have (5): 
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▪ X > 0 is the random variable, 

▪ μ is the mean of the logarithmic variable distribution, 

▪ σ is the standard deviation of the logarithmic variable distribution. 

 

 

2.4 PARAMETERS ESTIMATION 

For parameter estimation, we will focus on the most commonly used method, namely the 

maximum likelihood estimation method (1). 

 

Let X1,… . Xn be n independent and identically distributed random variables with density 

function f (x,θ). We define the likelihood function as follows: 

 

L(θ) =∏f(xi, θ)

n

i=1

 

 

The maximum likelihood estimator is defined as the statistic θ̂ = T(X1…Xn) such that: 

 

L(θMV) = MaxθL(θ) 

 

Therefore, we are looking for the value of θ based on the observations (x1…xn) that maximizes 

the probability of observing these observations. In the case where the likelihood function is 

continuous and twice differentiable with respect to the parameter θ, the maximum likelihood 

estimator θMV  is the solution of the system: 

 

- (
∂L

∂θ
)
θMV

= 0 

- (
∂2L

∂θ2
)
θMV

< 0 

 

 

2.5 GOODNESS OF A FIT TEST 

It's a statistical test used to assess how well a given probability distribution fits a set of 

observations from a data sample. 
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In order to choose the distribution that best fits the data, we use hypothesis tests to make a 

decision in favor of one distribution over another. 

 

2.5.1 THE FREQUENCY DISTRIBUTION CASE 

To choose between the Poisson or Negative Binomial distribution, we compare the empirical 

frequency and variance of the data because if these two moments are equal, we immediately 

think of equidispersion, which is the main characteristic of a Poisson distribution.  

In this regard, two hypothesis tests will be analyzed: the over-dispersion test based on the Fisher 

dispersion index statistic and the likelihood ratio test. 

 

▪ Over dispersion Test 

The hypothesis tested 𝐇𝟎 ∶ 𝐄(𝐍) = 𝐕(𝐍)  𝐕𝐞𝐫𝐬𝐮𝐬 𝐕(𝐍) >  𝑬(𝑵) 

In other words, the presence or absence of over dispersion. 

The statistic T to estimate the dispersion index, which is equal to 
𝐕(𝐍)

𝐄(𝐍)
 is given by: 

𝐓 =

(𝐧 − 𝟏)�̅�𝟐

𝐧
�̅�

 

Where �̅� and �̅�𝟐 are respectively the mean and the empirical variance of the frequency 

distribution N. 

Under the hypothesis H0, Hoel (1943) showed that the statistic nT, known as Fisher's dispersion 

index, is asymptotically distributed as a chi-squared distribution with n−1 degrees of freedom, 

where n is the number of observations of N. 

 

▪ Likelihood Ratio Test 

The likelihood ratio test is used to test if the sample of N follows a given distribution against 

an alternative distribution. In this study, we are interested in testing the following hypothesis:  

H0 : N follows a Poisson distribution vs H1 : N follows a negative binomial distribution. 

The likelihood ratio statistic is given by: 𝐓 = 𝟐(𝐥𝐧(𝐋𝟏) − 𝐥𝐧 (𝐋𝟎) 

Where: 

• L0: The likelihood of the Poisson distribution 

• L1: The likelihood of the negative binomial distribution  

The statistic T asymptotically tends to follow a chi-squared distribution with one degree of 

freedom. 
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2.5.2 THE COST DISTRIBUTION CASE: 

Since we are dealing with continuous distributions, we test the fit using the following tests: 

Kolmogorov-Smirnov and Anderson-Darling. 

 

▪ Kolmogorov – Smirnov Test 

The Kolmogorov-Smirnov goodness-of-fit test is a non-parametric test based on the maximum 

distance between a theoretical cumulative distribution function and the empirical cumulative 

distribution function of the sample. It tests the null hypothesis H0 that the observed data are 

generated by a theoretical probability distribution considered to be a suitable model. We 

consider a random variable X with cumulative distribution function Fx, which we want to 

compare to a continuous theoretical cumulative distribution function F0. We then test: 

𝐻0: 𝐹𝑥(𝑥) = 𝐹0(𝑥) ∀ 𝑥  Versus  ∃𝑥 𝐹𝑥(𝑥) ≠ 𝐹0(𝑥) 

 

Let {𝑿𝟏, 𝑿𝟐… .𝑿𝒏} be a sample of size N from X, the empirical cumulative distribution function 

Fn associated with this sample is: 

𝑭𝒏(𝒙) =
𝟏

𝒏
∑𝟏]−∞,𝒙]

𝒏

𝒊=𝟏

(𝑿𝒊) 

𝑭𝒏(𝒙) is the proportion of observations with values less than or equal to x.  

The difference between the observed values and the theoretical values deduced from the 

distribution function F0 can therefore be measured by the random variable: 

𝑫𝒏 = 𝒔𝒖𝒑𝒙∈𝒙|𝑭𝒏(𝒙) − 𝑭𝟎(𝒙)| 

The statistic Dn asymptotically converges to a chi-squared distribution with n-1 degrees of 

freedom. 

 

▪ Anderson-Darling Test 

The Anderson-Darling test is based on calculating a distance between the empirical distribution 

function and the fitted function defined as follows: 

𝑨𝒏
𝟐 = 𝒏 ∗ ∫ [ 𝑭𝒙(𝒙) − 𝑭𝟎(𝒙)]

𝟐 ∗
𝟏

𝑭𝟎(𝒙) ∗ [𝟏 − 𝑭𝟎(𝒙)]
∗ 𝒅𝑭(𝒙)

+∞

−∞

 

 

While both the Anderson-Darling test and the Kolmogorov test serve the same purpose, the 

difference between them lies in the fact that for the latter, only the maximum deviation between 

the empirical distribution and the fitted distribution matters, whereas the discrepancy indicator 
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in the former test captures the entirety of the data as the sum of all deviations is involved. 

Therefore, it can be inferred that the Kolmogorov test is much more sensitive to the presence 

of outliers in a sample compared to the Anderson-Darling test. 

 

2.6 MONTE CARLO SIMULATION 

Simulation techniques are highly useful when the complexity of the model under consideration 

makes any analytical approach extremely challenging. Once the random variables are generated 

according to a given distribution, the Monte Carlo method involves approximating E(X) by the 

empirical mean of simulations of the random variable X, following the law of large numbers. 

�̅� =
𝟏

𝑵𝒐𝒎𝒃𝒓𝒆 − 𝒔𝒊𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏𝒔
∑ 𝒙𝒊

𝑵𝒐𝒎𝒃𝒓𝒆−𝒔𝒊𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏𝒔

𝒊=𝟏
𝑵𝒐𝒎𝒃𝒓𝒆−𝒔𝒊𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏𝒔→∞
→                   𝑬(𝑿) 

 

Monte Carlo simulation is a computational technique used to estimate the probability of 

outcomes by repeatedly sampling random values for uncertain parameters and running 

simulations. It is named after the Monte Carlo Casino in Monaco, renowned for its games of 

chance, to illustrate the random nature of the method. 

In the context of risk assessment and decision-making, Monte Carlo simulation allows analysts 

to model the uncertainty and variability of input parameters and assess their impact on the 

outcomes of interest. It is widely used in various fields such as finance, engineering, physics, 

and statistics. 

Here are the general steps of a Monte Carlo simulation: 

1. Defining Input Parameters: Identify the uncertain parameters and their probability 

distributions. These could include variables such as interest rates, market prices, or project 

durations. 

2. Generatinng Random Samples: Randomly sample values for each input parameter from its 

probability distribution. This can be done using various methods, such as pseudorandom 

number generators. 

3. Running Simulations: For each set of sampled values, run a simulation of the model or system 

being analyzed. This could involve solving equations, running a financial model, or simulating 

a physical process. 

4. Aggregating Results: Collect the results of each simulation run, such as key performance 

metrics or outcomes of interest. 
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5. Analyzing Results: Analyze the aggregated results to understand the distribution of possible 

outcomes and assess key risk factors. This may involve calculating statistics such as mean, 

variance, percentiles, or probability density functions. 

Monte Carlo simulation offers several advantages, including its flexibility to model complex 

systems, its ability to incorporate uncertainty and variability, and its capability to generate 

probabilistic insights. However, it also has limitations, such as computational intensity, the need 

for large sample sizes for accurate results, and the requirement for appropriate validation and 

interpretation of results. 

Overall, Monte Carlo simulation is a powerful tool for decision-making under uncertainty, 

providing valuable insights into the likelihood and consequences of different scenarios. 

 

 

3 RESULTS 

The objective of this work is to assess the probable overall burden that the insurer must 

anticipate regarding the homeowner's insurance portfolio. This coincides with the funds that the 

insurer must hold to honor its future commitments without jeopardizing its financial stability. 

This portfolio consists of 1,763 policyholders with properties to cover, with an average value 

of $140,000 each. 

To quantify the risk, it is necessary to analyze past claims experience in order to model future 

claims. In this context, we will rely on a claims database that includes the following 

information: an 8-year historical record from 2015 to 2022, including the date of occurrence, 

the claim identifier, and the claim amount. 

However, to ensure comparability of historical data across different years of occurrence, we 

will proceed with an operation called "As If" scenario setting, which involves: 

 

• Updating the claim amount based on the inflation rate between the year of occurrence 

and the reference year, which is 2023. We consider the following annual inflation rates 

recorded in Morocco: 
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Table 1. Annual Inflation Rates 

Year 2015 2016 2017 2018 2019 2020 2021 2022 

Inflation Rate (%) 1,6 1,6 0,7 1,9 0,2 0,7 1,4 6,6 

 

Based on the inflation rates provided above, we revalue each claim X as follows: 

 

𝑋⬚
⬚𝐴𝑠 𝑖𝑓 = 𝑋⬚

⬚ ∗∏(1 + 𝑟𝑘)

𝑛

𝐾=𝑗

 

With the following notations: 

 

- 𝑛 :: The reference year - 1 (2022 in our case) 

- 𝑟𝑘: The inflation index for year k 

- J :  The occurrence year 

 

 

• Updating the number of annual claims by assuming a proportional relationship between 

the number of claims occurring annually and the number of policyholders per fiscal 

year, hence the following expression: 

 

𝑛𝑘
𝐴𝑠 𝑖𝑓 = 𝑛𝑎𝑑ℎ2023 ∗

𝑛𝑘
𝑛𝑎𝑑ℎ𝑒𝑘

 

 

 

With :   

- 𝑛𝑘 : Number of claims related to the yeark 

- 𝑛𝑘
𝐴𝑠 𝑖𝑓 : Number of claims As if  

- 𝑛𝑎𝑑ℎ𝑒𝑘 : Number of policyholders of the year k 
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The table below represents the frequencies and the total revalued claims between 2015 and 

2022: 

 

Table 2. Frequencies and the total revalued claims between 2015 and 2022 

Occurrence Year 2015 2016 2017 2018 2019 2020 2021 2022 

Number of annual 

claims 
62 74 92 79 57 83 74 68 

 

Now that we have constructed our As If frequency vector and As If claims, the next step is to 

search for a model that fits the data well. 

 

 

3.2 MODEL ESTIMATION 

In the following, we will use the collective risk model: 

 

𝑆⬚ =∑𝑋𝑖
⬚

𝑁⬚

𝑖=1

 

 

We use the following notations: 

 

- N: the number of annual claims. 

- Xi: The As If cost of the ith claim. 

- S: The total annual cost. 

 

Based on the theoretical concepts explained earlier, we will model the annual cost. To do this, 

we will start by modeling the cost of claim Xi and then the number N. 

 

3.2.1 COST LAW DETERMINATION 

In the Cost study, we test the adequacy of our data with a set of commonly used insurance laws, 

namely: Log Normal, Pareto, Gamma, Exponential, and Weibull. To find the law that fits the 

data well, we use the criterion of minimizing the Kolmogorov distance. We compile a table 
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consisting of various laws where we determine the corresponding Kolmogorov distance. Here 

are the results obtained: 

 

 

Table 3. Kolmogorov distance for different cost laws 

Models 
Log 

Normal 
Gamma Exponential Weibull Pareto 

Kolomogorov Test 0,063 0,789 0,387 0,278 0,184 

 

 

According to the results, we observe that the Log Normal distribution is the most suitable for 

modeling the cost of the claim as it minimizes the Kolmogorov distance.  

As for the parameters of the Log Normal distribution estimated by the maximum likelihood 

method, we obtain μ =11.97 and σ =0.84.  

Next, we will verify if the fit by the Log Normal distribution is indeed supported by statistical 

tests. 

 

3.2.2 FREQUENCY DISTRIBUTION DETERMINATION 

The most commonly used distributions to model the frequency variable N are the Poisson 

distribution and the Negative Binomial distribution. To choose between them, we opt for the 

dispersion test. 

 

Table 4. Dispersion ratio test 

 

Surdispersion �̅� �̅�2 IF 

Indice Fisher (IF) 73,63 128,27 12,19 

 

 

The Fisher index is compared with the 95% quantile of a Chi-square distribution with 7 degrees 

of freedom, which is equal to 14.07. 

We observe that IF is 12.19, which is lower than 14.07. Therefore, we reject the hypothesis of 

over dispersion of the data, and consequently, the Poisson distribution is the most suitable. 
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Parameter Estimation: 

To estimate the parameters, we use the maximum likelihood method. We obtain: 

 

𝝀 = 𝟕𝟑, 𝟔𝟑 

 

3.2.3 MODEL EVALUATION 

To validate the quality of the fit, we will use the Kolmogorov and Anderson Darling tests for 

the claim cost and the likelihood ratio test for the number of claims.  

As for the claim cost, we obtain the following results: 

 

 

Kolmogorov Test: 

 

Table 5. Kolmogorov Test 

Model Dn C P-value 

Log 

Normal 
0,063 0,096 0,063 

 

 

At the 5% significance level, we accept the following hypothesis: The claim cost follows a LN 

(11.97; 0.84). 

Indeed, the p-value obtained is greater than 0.05. 

 

Anderson Darling Test: 

 

Table 6. Anderson Darling Test 

  A P-Value 

Test 0,13 0,075 

 

The Anderson Darling test also confirms the quality of the fit, as the p-value associated with 

each test is greater than 0.05. 

 

 



 

 

 

 

 

 

 

www.IJAME.com                                                                                                                       Page 146  

International journal of applied management and economics 

Vol : 02 , N° 08 , June 2024 

ISSN :  2509-0720 

Likelihood Ratio Test: 

 

Regarding the number of claims, we confirm the choice of the model through the likelihood 

ratio test presented within the following table : 

 

Table 7. Likelihood Ratio Test 

 𝒍𝒏(𝑳𝟎)  𝒍𝒏(𝑳𝟏)  RV 

Ratio Test  - 43,97 - 30,42 27,1 

 

 

Using the likelihood ratio test, we can conclude that the Poisson distribution is accepted since 

LR is greater than the 95th percentile of a chi-squared distribution with 1 degree of freedom, 

which is equal to 3.84, thus confirming the quality of fit. 

 

3.2.4 SELECTED MODEL AND RISK ASSESSMENT 

At the end of the obtained results, the overall cost S is modeled as follows: 

 

S =∑Xi

N

i=1

 

 

With  N ~Pois (73.63) and Xi~LN (11.97 ; 0.84) 

 

Thus, E(S) can be calculated as E(N) * E(X) based on the theoretical notions explained earlier:  

 

E(N) = 73.63 and E(X) = $ 22,476.2. 

 

Therefore:  

E(S) = 10.65 million MAD. 
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3.2.5 C ALCULATION OF THE OVERALL RISK THROUGH MONTE CARLO SIMULATION 

Knowing the frequency and severity distributions, we can consider applying the simulation 

method.  

To apply this method, we have constructed a simulation algorithm that we have implemented. 

The following paragraph will outline the steps of the algorithm. 

 

To apply Monte Carlo, we need to simulate a large number of values of the random variable S.  

Since this variable is derived from a compound distribution, we will follow these steps: 

 

1. Set the number of simulations J for our case J = 100,000. 

 

2. Create a vector N containing J simulations following the same distribution as N:  

𝑁 = (𝑛1… 𝑛𝑗….𝑛𝐽) with 𝑛𝑗  being the jth realization of the simulation according to the 

distribution N. 

 

3. For j = 1 to J: 

➢ Simulate 𝑛𝑗variables 𝑥1
𝑛𝑗 , 𝑥2

𝑛𝑗 ……𝑥𝑛𝑗
𝑛𝑗  from the random variable   

LN(11.97; 0.84). 

➢ For 𝑖 = 1 to 𝑛𝑗  : 

𝑠𝑗 = ∑ 𝑥𝑖
𝑛𝑗
𝑖=1

𝑛𝑗
  

 

 

4. Calculate the average of the vector  {𝑠𝑗}1≤𝑗≤𝐽
, which corresponds to E (S). 

 

By applying the algorithm, we deduce that E (S) is equal to 10.42 million MAD, which is almost 

equivalent to the previous method.  

 

This demonstrates the strength of this technique in approximating complex mathematical 

expectations. 
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4 DISCUSSION OF THE FINDINGS 

In our study, the main objective is to assess the exact value of the actuarial risk associated with 

the homeowners insurance portfolio. At the beginning, we first updated the historical data to 

ensure comparability across different years of occurrence. This involved adjusting the claim 

amount based on the inflation rate and updating the number of claims by applying 

proportionality with the number of policyholders. 

Furthermore, we adopted a statistical approach to estimate the frequency and severity of claims. 

The results obtained from the Poisson distribution models for frequency and Log-Normal 

distribution for severity allowed us to gain a more detailed understanding of the behavior of 

claims and their potential impact on the portfolio. 

Indeed, Poisson and Log-Normal models are widely recognized for their ability to model 

frequency and severity of claims, respectively, in various insurance contexts. The choice of 

these models was based on their historical fit with claims data, as evidenced by the goodness-

of-fit tests we conducted. 

Specifically, in modeling severity, we tested the adequacy of our data against a set of commonly 

used insurance laws, namely: Log Normal, Pareto, Gamma, Exponential, and Weibull. To 

identify the law that best fits the data, we used the criterion of minimizing the Kolmogorov 

distance. According to the results, we observed that the Log Normal law is the most suitable 

for modeling claim severity as it minimizes the Kolmogorov distance. This choice was 

approved by both the Kolmogorov and Anderson tests. 

Moreover, for modeling the frequency law, the most commonly used laws are Poisson and 

Negative Binomial. To choose between them, we opted for the dispersion test, which rejected 

the hypothesis of data overdispersion, thus retaining the Poisson law. This choice will be 

validated by the likelihood ratio test. 

 

Based on the results obtained, the total aggregate cost S is modeled as follows: 

 

S =∑Xi

𝑁

i=1

 

 

 

With  N ~Pois(73.63) and Xi~LN (11.97 ; 0.84) 
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Thus, this parametric approach enabled us to quantify the risk by calculating E(S), which 

amounts to 10.65 million MAD. 

Furthermore, we compareed this result with the outcome obtained through the application of 

Monte Carlo simulation, which is one of the most effective methods for solving complex 

numerical problems. To apply this method, we constructed a simulation algorithm that we 

implemented. 

Moreover, by using Monte Carlo simulation, we were able to deepen our understanding of the 

risk by simulating various scenarios and examining the results to obtain a more precise 

estimation of the probable financial burdens. This method confirmed the estimation of the 

average total cost of claims evaluated by the initial approach. 

The results of our modeling have direct implications for the insurer's risk management strategy. 

They enable the insurer to better establish adequate reserves to cover future claims. This ability 

to forecast potential losses is essential for maintaining the insurer's solvency and complying 

with regulatory requirements. 
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5 CONCLUSION 

In this study, we assessed the actuarial risk associated with a portfolio of homeowner insurance 

by modeling the annual number of claims and the average cost. The Poisson and Log-Normal 

distributions were found to be the most suitable models for claim frequency and cost, 

respectively. These models were validated using various goodness-of-fit tests, confirming their 

adequacy with historical data. 

Additionally, by applying Monte Carlo simulation, we were able to enhance our understanding 

of the risk by simulating various scenarios and examining the results to obtain a more precise 

estimate of probable financial burdens. This method confirmed the estimation of the average 

total cost of claims, evaluated at approximately 10.65 million MAD. 

The ability to reliably predict risk and financial burdens is crucial for insurance portfolio 

management, enabling the insurance company to maintain solvency and safeguard against 

significant adverse events. This study demonstrates the importance of advanced statistical 

methods in assessing actuarial risk and making informed decisions in the insurance domain. 

In terms of future work, we aim to analyze the correlation within the portfolio in order to study 

the impact on the overall risk using different methods. In this context, we will resort to statistical 

methods derived from copula theory. Additionally, we will compute the Value at Risk for 

simulating extreme scenarios to quantify the probable exposure in such scenarios. 
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